Current Mode Buck-Boost Converter

General Description

The RT6150A/B is a high efficiency, fixed frequency, BuckBoost DC/DC converter that operates from input voltages above, below or equal to the output voltage. The topology incorporated in the IC provides a continuous transfer function through all operating modes, making the product ideal for single lithium-ion, multi-cell alkaline or Ni-MH battery applications where the output voltage is within the battery voltage range.

The device includes two N-MOSFET switches and two P MOSFET switches for high efficiency operation. Switching frequency is set at 1 MHz to reduce the external component size. Quiescent current is only $60 \mu \mathrm{~A}$ in Power Save Mode (PSM), maximizing battery life in portable applications. PSM operation is user controlled and can be enabled by driving the PS pin low. If the PS pin is driven high, then fixed frequency switching is enabled.

Other features include low shutdown current, internal, soft-start control, thermal shutdown protection and current limit. The RT6150A is available in the WDFN-10L 3×3 package and the RT6150B is available in the WDFN-10L 2.5×2.5 package.

Applications

- Portable Products
- Handheld Instrumentation

Features

- Single Inductor
- Fixed Frequency Operation with Battery Voltages
- Synchronous Rectification : Up to 90\% Efficiency
- Up to 800mA Continuous Output Current
- VOUT Disconnected from VIN during Shutdown
- 1.8 V to 5.5 V Input and Output Range
- Power Save Mode (PSM) Enable Control
- <1 $\mu \mathrm{A}$ Shutdown Current
- 10-Lead WDFN Packages
- RoHS Compliant and Halogen Free

Ordering Information

RT6150A/B $\square \square$
Package Type
QW : WDFN-10L 3x3 (W-Type)
QW : WDFN-10L 2.5x2.5 (W-Type)
L_Lead Plating System
G: Green (Halogen Free and Pb Free)
A : WDFN-10L 3×3
B : WDFN-10L 2.5×2.5
Note :
Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb -free soldering processes.

Simplified Application Circuit

Marking Information

RT6150AGQW

| ON=YM
 DNN |
| ---: | ---: | | ON=: Product Code |
| ---: |
| YMDNN : Date Code |

RT6150BGQW

Pin Configurations

WDFN-10L 3×3 / WDFN-10L 2.5×2.5

Functional Pin Description

Pin No.	Pin Name	Pin Function		
1	VOUT	Output of the Buck-Boost Converter. Connect a capacitor between the VOUT and GND.		
2	LX2	Second Switch Node. Connect this pin to the inductor.		
3,9,				
11 (Exposed Pad)			GND	Power Ground. The exposed pad must be soldered to a large PCB and
:---				
connected to GND for maximum power dissipation.				

Function Block Diagram

Operation

The RT6150A/B is a synchronous average current mode switching Buck-Boost converter designed to maintain a fixed output voltage from an input supply that can be above, equal, or below the output voltage. The average inductor current is regulated by a fast current regulator which is controlled by a voltage control loop. The voltage error amplifier gets its feedback input from the FB pin. For adjustable output voltage, a resistive voltage divider must be connected to the FB pin. When VIN is greater than VOUT, the device operates in Buck mode. When VIN is lower than VOUT, the device operates in Boost mode. When VIN is close to VOUT, the RT6150A/B automatically enters Buck-Boost mode. In BuckBoost mode, the converter will maintain the regulation for output voltage and keep a minimum current ripple in the inductor to guarantee good performance.
Absolute Maximum Ratings (Note 1)

- VOUT, VIN, EN, PS, VINA, FB Pin -0.3 V to 6 V
- Switch Output Voltage, LX1, LX2 Pin -0.3 V to 6 V
< 10ns -2 V to 7.5 V
- Power Dissipation, $\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$WDFN-10 3x33.28W
WDFN-10 2.5x2.5 2.44W
- Package Thermal Resistance (Note 2)
WDFN-10 3x3, θ_{JA} $30.5^{\circ} \mathrm{C} / \mathrm{W}$
WDFN-10 3x3, $\theta_{\text {Jc }}$ $7.5^{\circ} \mathrm{C} / \mathrm{W}$
WDFN-10 $2.5 \times 2.5, \theta_{\mathrm{JA}}$ $40.9^{\circ} \mathrm{C} / \mathrm{W}$
WDFN-10 $2.5 \times 2.5, \theta_{\mathrm{Jc}}$ $18.6^{\circ} \mathrm{C} / \mathrm{W}$
- Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
- Junction Temperature $150^{\circ} \mathrm{C}$
- Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- ESD Susceptibility (Note 3)
HBM (Human Body Model) 2kV
MM (Machine Model) 200V
Recommended Operating Conditions (Note 4)
- Supply Input Voltage, VIN 1.8 V to 5.5 V
- Junction Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$- Ambient Temperature Range$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Electrical Characteristics

($\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUt }}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Parameter		Symbol	Test Conditions	Min	Typ	Max	Unit
Input Voltage UVLO	High-Level			--	1.65	1.8	V
	Low-Level			1.4	1.55	--	
Feedback Voltage		$V_{\text {FB }}$	$\mathrm{V}_{\mathrm{PS}}=\mathrm{V}_{\text {IN }}$	0.495	0.5	0.505	V
Feedback Input Current			$\mathrm{V}_{\mathrm{FB}}=0.5 \mathrm{~V}$	--	1	50	nA
Quiescent Current			$\begin{aligned} & \text { lout }=0 \mathrm{~mA}, \mathrm{PS}=0 \mathrm{~V} \quad(\text { Note } 5) \\ & \text { Power Save Mode } \end{aligned}$	--	60	--	$\mu \mathrm{A}$
			EN = OV, Not Including Switch Leakage Shutdown	--	0.1	1	
N-MOSFET Switch Leakage				--	0.1	5	$\mu \mathrm{A}$
P-MOSFET Switch Leakage				--	0.1	10	$\mu \mathrm{A}$
N-MOSFET Switch On Resistance		RDS(ON)_N		--	0.15	--	Ω
P-MOSFET Switch On Resistance		RDS(ON)_P		--	0.15	--	Ω
Switch Current Limit		ILIM	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$	1.6	--	--	A
Oscillator Frequency		fosc		0.8	1	1.2	MHz
Soft-Start Time		tss	Time from when EN signal asserts to output voltage lout $=0 \mathrm{~mA}$	--	0.65	1	ms

Parameter		Symbol	Test Conditions	Min	Typ	Max	UnitV
EN and PS Input Voltage	Logic-High			1.2	--	--	
	Logic-Low			--	--	0.4	
EN and PS Input Current			$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{PS}}=\mathrm{V}_{\text {IN }}$	--	0.01	1	$\mu \mathrm{A}$
Thermal Shutdown		TSD		--	140	--	${ }^{\circ} \mathrm{C}$

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
Note 2. θ_{JA} is measured at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_{Jc} is measured at the exposed pad of the package.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.
Note 5. Current measurements are performed when the output are not switching.

Typical Application Circuit

Typical Operating Characteristics

Output Voltage Ripple

Load Transient Response

Output Voltage Ripple

Load Transient Response

Load Transient Response

Application Information

The RT6150A/B Buck-Boost DC/DC converter is designed for systems powered by one-cell Li-lon or Li-Polymer battery with a typical voltage between 2.5 V and 4.2 V . They can also be used in systems powered by a double or triple cell Alkaline, NiCd, or NiMH battery with a typical terminal voltage between 1.8 V and 5.5 V . Additionally, the output voltage can be set between 1.8 V and 5.5 V

The controller monitors the average input current as well as the peak input current. With this, maximum input power can be controlled to achieve a safe and stable operation. To protect the device from overheating, an internal temperature sensor is implemented.

Enable

The device can be enabled or disenabled by the EN pin. When the EN pin is higher than the threshold of logichigh, the device starts operation with soft-start. Once the EN pin is set at low, the device will be shut down. In shutdown mode, the converter stops switching, internal control circuitry is turned off, and the load is disconnected from the input. This also means that the output voltage can drop below the input voltage during shutdown.

Soft-Start

When the RT6150A/B is enabled, the output voltage will increase to its setting value within 1 ms . During start-up period, the duty cycle and the peak current are limited to reduce high peak current flowing from the input.

Output Voltage Setting

The output voltage is adjustable by an external resistive divider. The resistive divider must be connected between VOUT, FB and GND. When the output voltage is regulated properly, the typical value of the voltage at the FB pin is 500 mV , and the current into FB pin is about 10 nA generally. The current through divider resistor should be about 100 times larger than the current into FB pin in order to neglect the FB input current. The suggested value for $R 2$ is $80 \mathrm{k} \Omega$ to $500 \mathrm{k} \Omega$, and the value of $R 1$ is depended on the needed output voltage. Output voltage can be calculated by equation as below :
$\mathrm{R} 1=\mathrm{R} 2 \times\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{FB}}}-1\right)$

For example, an output voltage of 3.3 V is needed. It is recommended to use a $487 \mathrm{k} \Omega$ resistor for R1. For better transient response performance, adding a feedforward capacitor in parallel with R1 is recommended. The value for the feedforward capacitor can be calculated using equation as below :
$\mathrm{Cff}=[(487 \mathrm{k} / \mathrm{R} 1) \times 20]-20(\mathrm{pF})$

Power Save Mode

The PS pin can be used to select different operation modes. To enable Power Save Mode (PSM), the PS pin must be set at low. The PSM is used to improve the efficiency at light load. If the power save mode is disabled by pulling high the PS pin, the converter will operate in PWM mode with fixed switching frequency.

Under-Voltage Lockout

The under-voltage lockout circuit prevents the device from operating incorrectly at low input voltages. It prevents the converter from turning on the power switches under undefined conditions and prevents the battery from deep discharge. VINA voltage must be greater than 1.65 V to enable the converter. During operation, if VINA voltage drops below 1.55 V , the converter is disabled until the supply exceeds the UVLO rising threshold. The RT6150A/B automatically restarts if the input voltage recovers to the input voltage UVLO high level.

Thermal Shutdown

The device has a built-in temperature sensor which monitors the internal junction temperature. If the temperature exceeds the threshold, the device stops operating. As soon as the IC temperature has decreased below the threshold with a hysteresis, it starts operating again. The built-in hysteresis is designed to avoid unstable operation at IC temperatures near the over temperature threshold.

Inductor Selection

To properly configure the Buck-Boost converter, an inductor must be connected between the LX1 and LX2 pins. To estimate the inductance value, two equations are listed as below :

L1 $>\frac{\text { VOUT } \times\left(\mathrm{V}_{\text {IN }}(\mathrm{MAX})-\mathrm{V}_{\text {OUT }}\right)}{\mathrm{f} \times \Delta \mathrm{IL} \times \operatorname{VIN}(\mathrm{MAX})}$
$\mathrm{L} 2>\frac{\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})} \times\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}(\mathrm{MIN})\right)}{\mathrm{f} \times \Delta \mathrm{L} \times \mathrm{V}_{\text {OUT }}}$
where f is the minimum switching frequency. L1 is the minimum inductor value for Buck mode operation. $\mathrm{V}_{\mathrm{IN}(\text { MAX }}$ is the maximum input voltage. L2 is the minimum inductance, for Boost mode operation. $\mathrm{V}_{\operatorname{IN}(\mathrm{MIN})}$ is the minimum input voltage. The recommended minimum inductor value is either L1 or L2 whichever is higher. For example, a suitable inductor value is $2.2 \mu \mathrm{H}$ for generating a 3.3 V output voltage from a Li-Ion battery with the range from 2.5 V to 4.2 V . The recommended inductor value range is between $1.5 \mu \mathrm{H}$ and $4.7 \mu \mathrm{H}$. In general, a higher inductor value offers better performance in high voltage conversion condition.

Input Capacitor Selection

At least a $10 \mu \mathrm{~F}$ input capacitor is recommended to improve transient behavior of the regulator and EMI behavior of the total power supply circuit. A ceramic capacitor placed as close as possible to the VIN and GND pins of the IC is recommended.

Output Capacitor Selection

The output capacitor selection determines the output voltage ripple and transient response. It is recommended to use ceramic capacitors placed as close as possible to the VOUT and GND pins of the IC. If, for any reason, the application requires the use of large capacitors which can not be placed close to the IC, using a small ceramic capacitor in parallel to the large one is recommended. This small capacitor should be placed as close as possible to the VOUT and GND pins of the IC. The output voltage ripple for a given output capacitor is expressed as follows :
$\Delta \mathrm{V}_{\text {OUT }}$, peak (Buck) $=\frac{\mathrm{V}_{\text {OUT }} \times\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)}{\mathrm{V}_{\text {IN }} \times 8 \times \mathrm{L} \times(\mathrm{fOSC})^{2} \times \text { COUT }}$
Δ Vout , peak $($ Boost $)=\frac{\text { LOAD } \times(\text { VOUT }-\mathrm{VIN})}{\text { COUT } \times \mathrm{V}_{\text {OUT }} \times \text { fosc }}$
If the RT6150A/B operates in Buck mode, the worst-case voltage ripple occurs at the highest input voltage. When the RT6150A/B operates in boost mode, the worst-case voltage ripple occurs at the lowest input voltage.

The maximum voltage of overshoot or undershoot, is inversely proportional to the value of the output capacitor. To ensure stability and excellent transient response, it is recommended to use a minimum of $10 \mu \mathrm{~F} / \mathrm{X} 7 \mathrm{R} / 1206$ capacitors at the output. For surface mount applications, Taiyo Yuden or TDK ceramic capacitors, X7R series Multilayer Ceramic Capacitor is recommended.

A capacitor with a value in the range of the calculated minimum should be used. This is required to maintain control loop stability. There are no additional requirements regarding minimum ESR. Low ESR capacitors should be used to minimize output voltage ripple. Larger capacitors will cause lower output voltage ripple as well as lower output voltage drop during load transients.

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :
$P_{D(M A X)}=\left(T_{J(M A X)}-T_{A}\right) / \theta_{J A}$
where $T_{J(M A X)}$ is the maximum junction temperature, T_{A} is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is $125^{\circ} \mathrm{C}$. The junction to ambient thermal resistance, θ_{JA}, is layout dependent. For WDFN-10L 3×3 package, the thermal resistance, θ_{JA}, is $30.5^{\circ} \mathrm{C} / \mathrm{W}$ on a standard JEDEC 51-7 four-layer thermal test board. For WDFN-10L 2.5×2.5 package, the thermal resistance, θ_{JA}, is $40.9^{\circ} \mathrm{C} / \mathrm{W}$ on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ can be calculated by the following formula :
$P_{D(\text { MAX })}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) /\left(30.5^{\circ} \mathrm{C} / \mathrm{W}\right)=3.28 \mathrm{~W}$ for WDFN-10L 3×3 package
$P_{D(\operatorname{mAX})}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) /\left(40.9^{\circ} \mathrm{C} / \mathrm{W}\right)=2.44 \mathrm{~W}$ for WDFN-10L 2.5×2.5 package

The maximum power dissipation depends on the operating ambient temperature for fixed $\mathrm{T}_{\mathrm{J} \text { (MAX) }}$ and thermal resistance, θ_{JA}. The derating curve in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 1. Derating Curve of Maximum Power Dissipation

Layout Considerations

For the best performance of the RT6150A/B, the following PCB layout guidelines must be strictly followed.

- Place the input and output capacitors as close as possible to the input and output pins respectively for good filtering.
- Keep the main power traces as wide and short as possible.
- The switching node area connected to LX and inductor should be minimized for lower EMI.
- Place the feedback components as close as possible to the FB pin and keep these components away from the noisy devices.
- Connect the GND and Exposed Pad to a strong ground plane for maximum thermal dissipation and noise protection.
- Directly connect the output capacitors to the feedback network to avoid bouncing caused by parasitic resistance and inductance from the PCB trace.

Figure 2. PCB Layout Guide

Outline Dimension

Note : The configuration of the Pin \#1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions In Millimeters		Dimensions In Inches					
	Min	Max	Min	Max				
A	0.700	0.800	0.028	0.031				
A1	0.000	0.050	0.000	0.002				
A3	0.175	0.250	0.007	0.010				
b	0.180	0.300	0.007	0.012				
D	2.950	3.050	0.116	0.120				
D2	2.300	2.650	0.091	0.104				
E	2.950	3.050	0.116	0.120				
E2	1.500	1.750	0.059	0.069				
e	0.500							0.020
L	0.350	0.450	0.014	0.018				

W-Type 10L DFN 3x3 Package

Symbol	Dimensions In Millimeters		Dimensions In Inches				
	Min.	Max.	Min.	Max.			
A	0.700	0.800	0.028	0.031			
A1	0.000	0.050	0.000	0.002			
A3	0.175	0.250	0.007	0.010			
b	0.200	0.300	0.008	0.012			
D	2.400	2.600	0.094	0.102			
D2	1.950	2.050	0.077	0.081			
E	2.400	2.600	0.094	0.102			
E2	1.150	1.250	0.045	0.049			
e	0.500						0.020
L	0.350	0.450	0.014	0.018			

W-Type 10L DFN 2.5x2.5 Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen $1^{\text {st }}$ Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789

