ELECTRICAL MODEL DOCUMENTATION


MODEL SUMMARY

An SFP+ application, defined by SFF-8431, could bean electrical-to-optical module or an electrical-to-electrical module such as a passive cable. SFP+applications are intended to support Datacomapplications. Examples of these applications are 10Gbps Ethernet, 8.5 Gbps Fibre Channel, 10.51 GbpsFibre Channel, 10 Gbps Ethernet with FEC and Telecom (SONET OC-192 and G.709 "OTU-2").

The SFF-8083 specification defines the SFP/SFP+host connector. It includes both the dimensionalrequirements and the high-speed signal integrityrequirements.

The SFF-8432 specification defines the requirements for the improved SFP+ cage and modules in order toaddress EMC compliance.

Small Form-Factor Pluggable (SFP+)

Further information regarding this connector product line and other related Molex SFP+ products can be found at http://www.molex.com/product/sfp-plus.html

MODEL TYPE:S-parameter	MODEL FORMAT: Touchstone (*.sNp)		
MODEL FILENAME: SP-74441-001_revA.s8p	DATA FORMAT: Real/Imaginary		
MODEL BASIS: Analytical 3-D field solution	MODEL SOURCE: Ansoft HFSS version 14.0.0		
BANDWIDTH: DC –20.48 GHz	RESOLUTION: 10 MHz steps		
REFERENCE: 50 ohms	NUMBER OF POINTS: 2049 (2048 + 1 DC)		
NUMBER OF CHANNELS:2 differential	NUMBER OF PORTS: 8 single-ended/model		
CHANNEL TYPE: Coupled pairs + reference	VALIDATION:		
MODEL APPLICATION: SFP/SFP+	DATA RATE: 11.10Gbps		

APPLICABLE PART NUMBER(S): 74441

DISCLAIMERS: Information contained in this document is simulated. Molex Incorporated does not guarantee the performance of the final product to the information provided in this document. Molex does not represent, warrant or guarantee the accuracy of the information, expressly disclaims all warranties including the implied warranties of merchantability and fitness for particular purpose and shall not be liable for any damages whatsoever arising from use of, or inability to use, the information contained in this document or accompanying electronic file. The user is responsible for verifying the results of their use of this information, and assumes all risk of doing or not doing so. Use of the electronic file evidences user's agreement to the above terms.

REVISION:	ECN INFORMATION: EC No: UCP2013-0034	SFP+ Connector Electrical Model Documentation		1 of 8		
	DATE: 2012/07/05	MOLEX CONFIDENTIAL				
DOCUMENT NUMBER:		CREATED / REVISED BY:	REVIEWED BY:	APPRO\	/ED BY:	
EE-74441-001		K. Wang	P. Casher	P. Casher		
TEMPLATE FILENAME: SPM[SIZE_A](V.1).DOC						

ELECTRICAL MODEL DOCUMENTATION

MODEL DESCRIPTION

This model contains 2 differential pairs (and their associated grounds) arranged in a G-S-S-G format circuit board interfaces, which results in an 8-port, single-ended S-parameter matrix. Two power pins are not part of the ports. The signal path represented by the model consists of a surface-mount host card, and an edge card connector inserted into one side of the connector.

The electrical model was simulated using Ansoft HFSS in the Frequency domain. The frequency range of this simulation is from 0 GHz to 20.48GHz. With Ansoft HFSS the DC values of the S-parameters are extrapolated from the lowest solved frequency (10 MHz).

CONDUCTOR TO PORT MAPPING TABLE

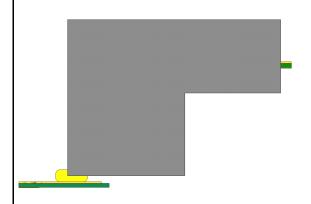
SIGNAL PATHS

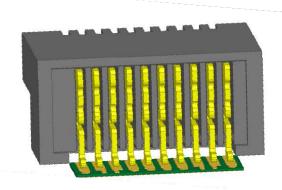
Terminals (Host Board)	Ports (Host Board)	Ports (Edge Card)
12	1	2
13	3	4
18	5	6
19	7	8

Non-available Signal Paths

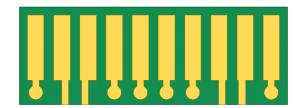
Terminals	
1,2,3,4,5,6,7,8,9,10 11,14,15,16,17,20	

REVISION:	ECN INFORMATION: EC No: UCP2013-0034 DATE: 2012/07/05	Electrical MOLEX CONFIDENTIAL	2 of 8		
DOCUMENT NUMBER:		CREATED / REVISED BY:	REVIEWED BY:	APPRO\	/ED BY:
EE-74441-001		K. Wang	P. Casher	P. Casher	
TEMPLATE FILENAME: SPM[SIZE_A](V.1).DOC					


ELECTRICAL MODEL DOCUMENTATION

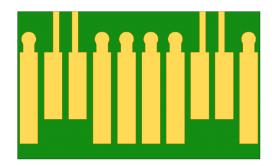

PART ILLUSTRATIONS

Connector


Side

Perspective

Host Card



Host Board Construction Details

Thickness: 0.148mm

Layers: 2 (Microstrip & Ground)
Board Material: Dk=3.8, Df=0.015
Copper: 1.5 oz. (.05mm)

Edge Card

Edge Card Pads

 Pitch:
 0.8 mm

 Ground:
 3.0 x 0.6 mm

 Signal:
 2.2 x 0.6 mm

REVISION:

ECN INFORMATION:

TITLE:

SHEET No.

Α

EC No: UCP2013-0034

DATE: 2012/07/05

MOLEX CONFIDENTIAL

3 of 8

DOCUMENT NUMBER:

EE-74441-001

CREATED / REVISED BY:

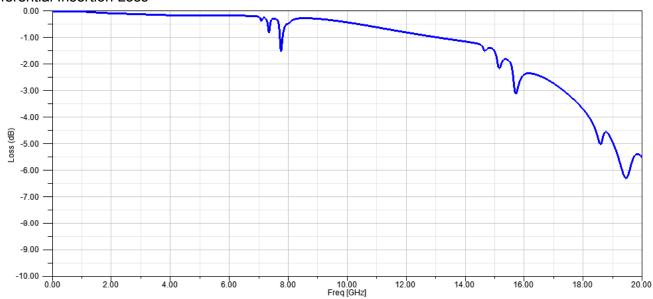
K. Wang

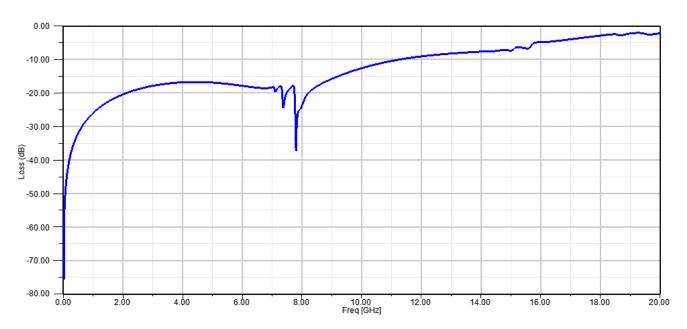
REVIEWED BY:
P. Casher

SFP+ Connector

Electrical Model Documentation

APPROVED BY:
P. Casher


TEMPLATE FILENAME: SPM[SIZE_A](V.1).DOC


ELECTRICAL MODEL DOCUMENTATION

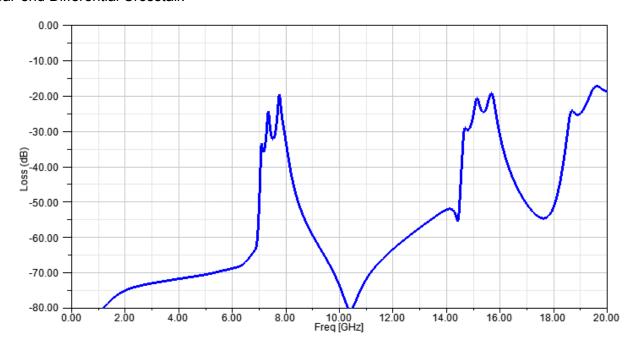
REFERENCE RESULTS

Differential Insertion Loss

Differential Return Loss

REVISION: BCN INFORMATION: EC No: UCP2013-0034 DATE: 2012/07/05 DOCUMENT NUMBER: CREATED / REVISED BY: REVIEWED BY: SHEET No. SHEET No. 4 of 8

TEMPLATE FILENAME: SPM[SIZE_A](V.1).DOC


EE-74441-001 K. Wang P. Casher P. Casher

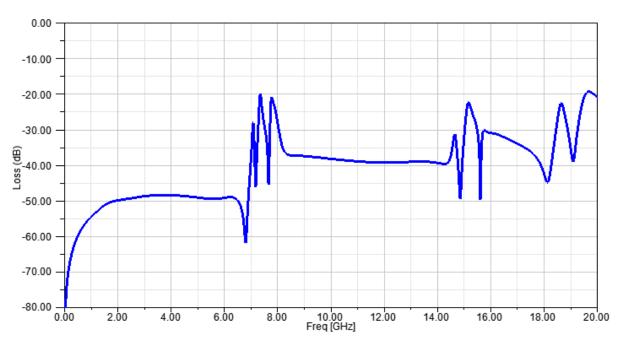
ELECTRICAL MODEL DOCUMENTATION

REFERENCE RESULTS

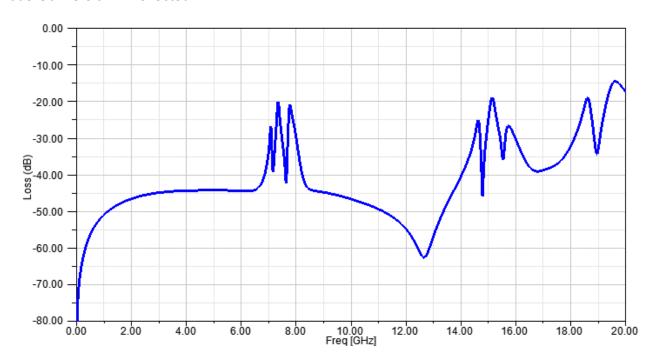
Near-end Differential Crosstalk

REVISION: BCN INFORMATION: EC No: UCP2013-0034 DATE: 2012/07/05 DOCUMENT NUMBER: TITLE: SFP+ Connector Electrical Model Documentation MOLEX CONFIDENTIAL

SHEET No. 5 of 8


EE-74441-001 K. Wang P. Casher P. Casher

 $TEMPLATE\ FILENAME:\ SPM[SIZE_A](V.1).DOC$


ELECTRICAL MODEL DOCUMENTATION

REFERENCE RESULTS

Mode Conversion - Thru

Mode Conversion - Reflected

REVISION: BCN INFORMATION: SFP+ Connector Electrical Model Documentation MOLEX CONFIDENTIAL SFP+ Connector 6 of 8

DOCUMENT NUMBER:

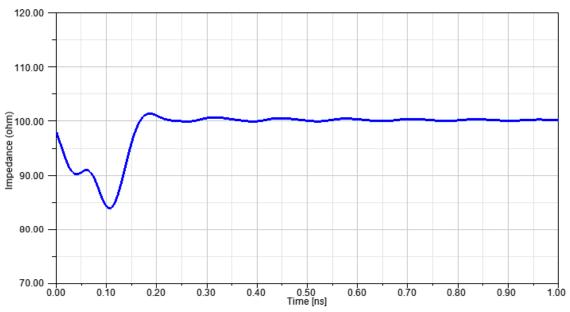
EE-74441-001

CREATED / REVISED BY:

K. Wang

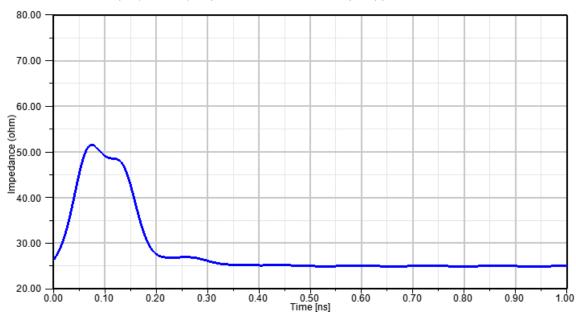
REVIEWED BY:
P. Casher

APPROVED BY:
P. Casher


 $TEMPLATE\ FILENAME:\ SPM[SIZE_A](V.1).DOC$

ELECTRICAL MODEL DOCUMENTATION

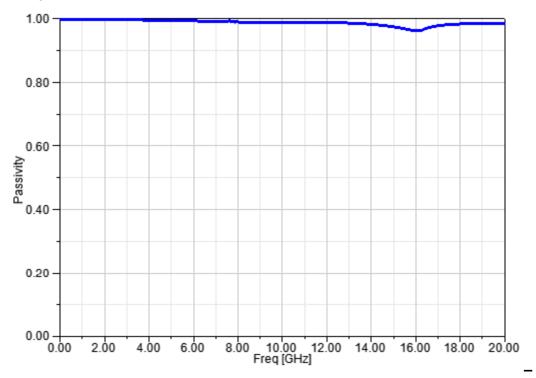
REFERENCE RESULTS


Differential TDR Response

Rise-time of 35ps (10-90%), representative of 10.0 Gbps applications

Common Mode TDR Response

Rise-time of 35ps (10-90%), representative of 10.0 Gbps applications


REVISION:	ECN INFORMATION:	SFP+ Connector Electrical Model Documentation		SHEET No.	
A	EC No: UCP2013-0034			7 of 8	
	DATE: 2012/07/05	MOLEX CONFIDENTIAL		1 01 0	
DOCUMENT NUMBER:		CREATED / REVISED BY:	REVIEWED BY:	<u>APPROV</u>	<u>ED BY:</u>
EE-74441-001		K. Wang	P. Casher	P. Casher	

TEMPLATE FILENAME: SPM[SIZE_A](V.1).DOC

ELECTRICAL MODEL DOCUMENTATION

Model Passivity

REVISION:	ECN INFORMATION:	TITLE:	E: SFP+ Connector		SHEET No.
_	Electrical Model Documentation		ation	8 of 8	
DATE: 2012/07/05	DATE: 2012/07/05	MOLEX CONFIDENTIAL			o or o
DOCUMENT NUMBER:		CREATED / REVISED BY:	REVIEWED BY:	APPROV	ED BY:

 EE-74441-001
 K. Wang
 P. Casher
 P. Casher